A Fast Framework for the Constrained Mean Trajectory Segment Model by Avoidance of Redundant Computation on Segment
نویسندگان
چکیده
The segment model (SM) is a family of methods that use the segmental distribution rather than frame-based density (e.g. HMM) to represent the underlying characteristics of the observation sequence. It has been proved to be more precise than HMM. However, their high level of complexity prevents these models from being used in practical systems. In this paper, we propose a framework that can reduce the computational complexity of the Constrained Mean Trajectory Segment Model (CMTSM), one type of SM, by fixing the number of regions in a segment so as to share the intermediate computation results. Our work is twofold. First, we compare the complexity of SM with that of HMM and point out the source of the complexity in SM. Secondly, a fast CMTSM framework is proposed, and two examples are used to illustrate this framework. The fast CMTSM achieves a 95.0% string accurate rate in the speaker-independent test on our mandarin digit string data corpus, which is much higher than the performance obtained with HMM-based system. At the mean time, we successfully keep the computation complexity of SM at the same level as that of HMM.
منابع مشابه
A New Model for Best Customer Segment Selection Using Fuzzy TOPSIS Based on Shannon Entropy
In today’s competitive market, for a business firm to win higher profit among its rivals, it is of necessity to evaluate, and rank its potential customer segments to improve its Customer Relationship Management (CRM). This brings the importance of having more efficient decision making methods considering the current fast growing information era. These decisions usually involve several criteria,...
متن کاملModelling and Optimization Approach for Trajectory Planning of Three Freedom Planar Manipulators
In this paper, we present a method for the problem of the optimal trajectory planning of redundant robot manipulators in the presence of fixed obstacles. Quadrinomial and quintic polynomials are used to describe the segment of the trajectory. Cultural based PSO (CBPSO) algorithm is proposed to design a collision-free trajectory for planar redundant manipulators. Kinematics redundancy is integra...
متن کاملEstimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کاملFr{'e}chet and Hausdorff Queries on $x$-Monotone Trajectories
vspace{0.2cm}In this paper, we design a data structure for the following problem. Let $pi$ be an $x$-monotone trajectory with $n$ vertices in the plane and $epsilon >0$. We show how to preprocess $pi$ and $epsilon$ into a data structure such that for any horizontal query segment $Q$ in the plane, one can quickly determine the minimal continuous fraction of $pi$ whose Fr{'e}chet and Hausdo...
متن کاملHigh-accuracy alternating segment explicit-implicit method for the fourth-order heat equation
Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCLCLP
دوره 11 شماره
صفحات -
تاریخ انتشار 2006